# A Statistical Parsing Framework for Sentiment Classification ProbModels@ILCC

Li Dong

Li Dong

#### **Sentence-Level Sentiment Classification**

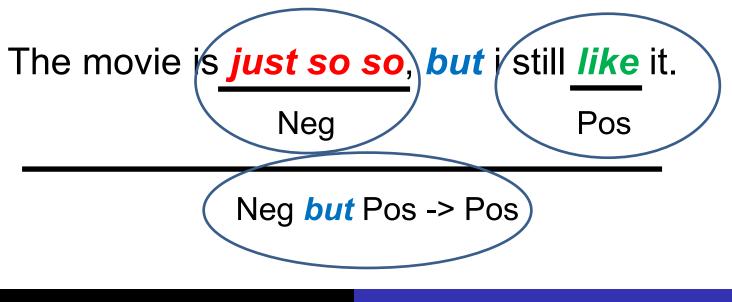
- Input: sentence
- Output: polarity label (e.g., positive / negative)
- One of the most challenging problem is:
  - Sentiment composition
  - (1) The movie is <u>not</u> good. [negation]
  - (2) The movie is very *good*. [intensification]
  - (3) The movie is <u>not *funny* at all</u>. [negation + intensification]
  - (4) The movie is *just so so*, <u>but</u> i still *like* it. [contrast]
  - (5) The movie is <u>not very good</u>, <u>but</u> i still *like* it. [negation + intensification + contrast]

#### Two Mainstream Methods

#### Lexicon-based

- Lexicons (funny, dislike) + Rules (not \*, \* but \*)
- Pros: simple, interpretable
- Cons: scalability
- Classifier-based
  - Classifier (SVM, MaxEnt) + Features (n-gram, POS)
  - Pros: data-driven, coverage
  - Cons: tricks to handle sentiment compositions

- Two key components
  - Lexicon
  - Rule
- Q1: Can we learn them from data?

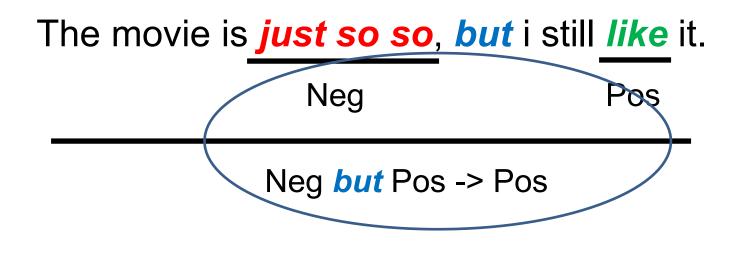


- Sentiment composition is not only about polarity
  - P(Pos|Very good) > P(Pos|Good)
- Q2: Can we model polarity strength?

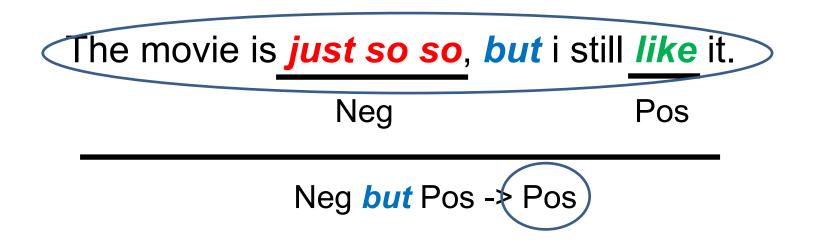
# The movie is **just so so**, **but** i still **like** it. Neg Pos

Neg *but* Pos -> Pos

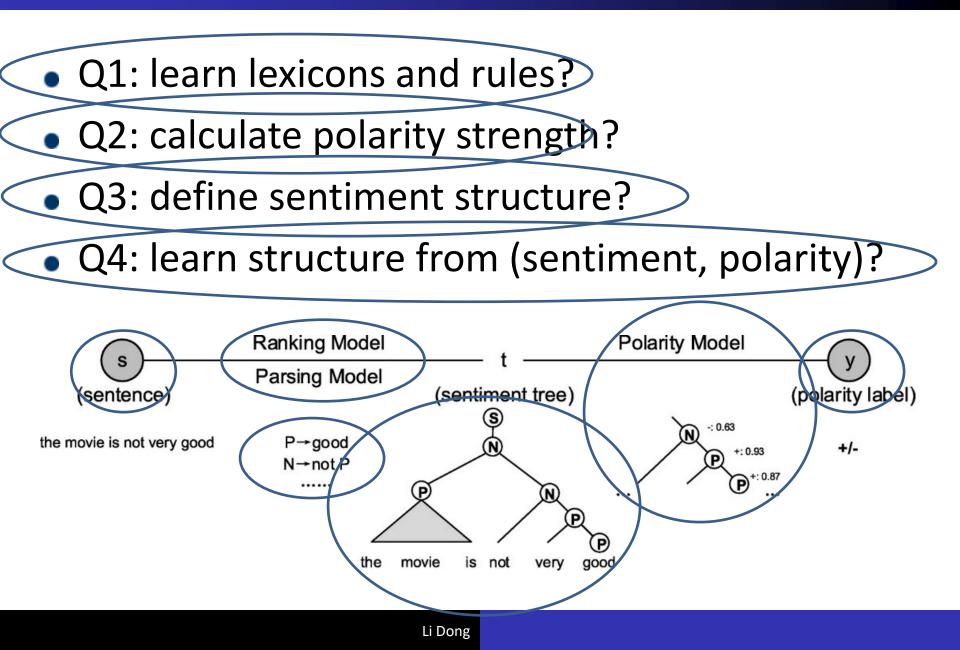
- Latent sentiment structure
- Q3: How do we define the sentiment structure?



- Latent sentiment structure
- Q4: Can we only use (sentence, polarity) pairs to learn latent sentiment structure?



#### Overview



# **Comparison with Semantic Parsing**

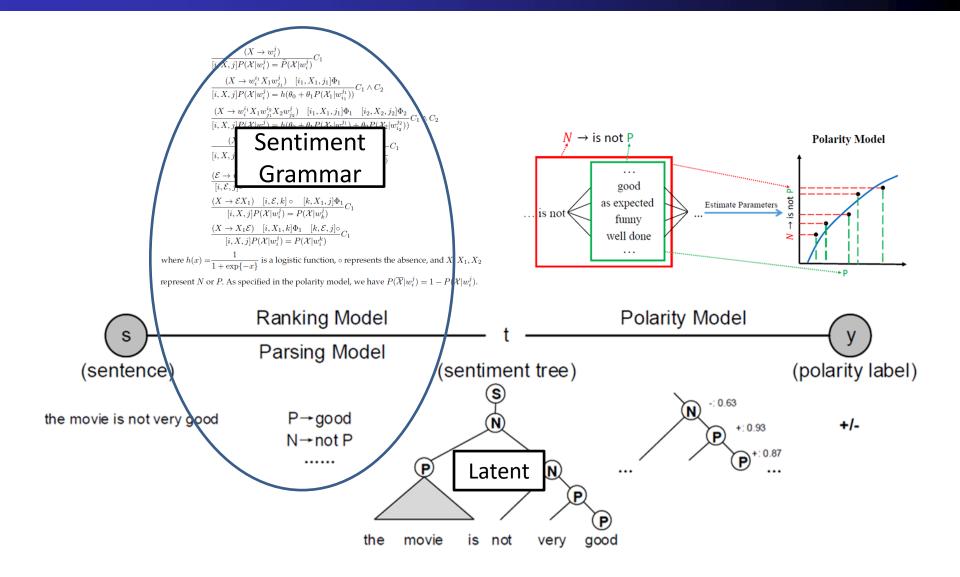
#### Sentiment parsing

p(label|sentence, model) = p(label|tree, polarity model) deterministic p(tree|sentence, parsing model) probabilistic

#### Semantic parsing

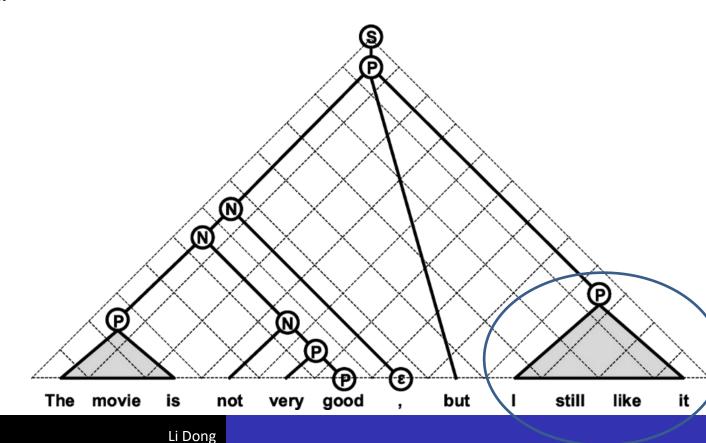
p(answer|question, model) = p(answer|representation, database)p(representation|question, parsing model)

| Sentiment parsing           | Semantic parsing                |  |  |
|-----------------------------|---------------------------------|--|--|
| sentiment lexicons          | lexical triggers                |  |  |
| (latent) sentiment tree     | (latent) meaning representation |  |  |
| (sentence, polarity) pairs  | (question, answer) pairs        |  |  |
| calculate polarity strength | execute query                   |  |  |

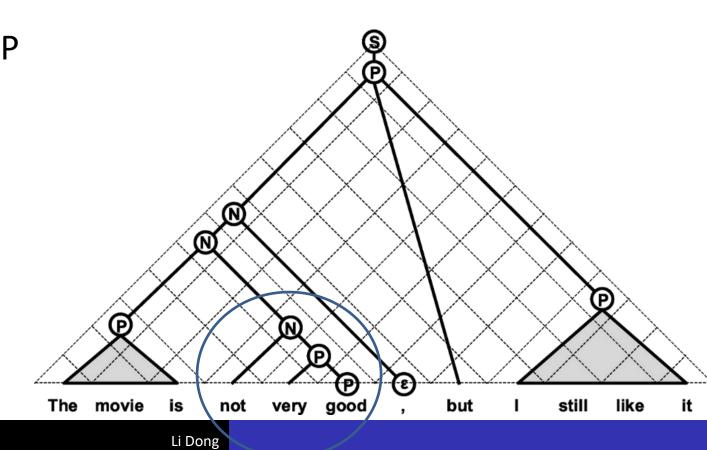


- Built upon Context-Free Grammar
- G<sub>s</sub> =< V<sub>s</sub>,Σ<sub>s</sub>,S,R<sub>s</sub> >
  - V<sub>s</sub>={N,P,S,E}: non-terminal set
  - $\Sigma_s$ : terminal set
  - S: start symbol
  - R<sub>s</sub>: rewrite rule set

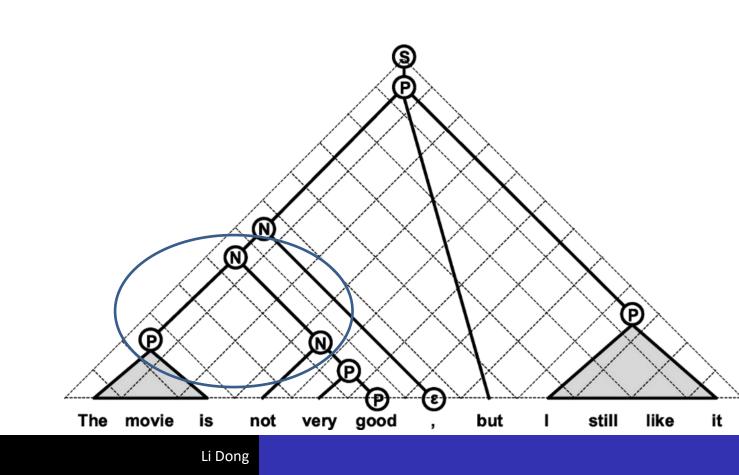
- Dictionary rules  $X \to w_0^k$ , where  $X \in \{N, P\}$ ,  $w_0^k = w_0 \dots w_{k-1}$ .
  - P -> I still like it
  - P -> good



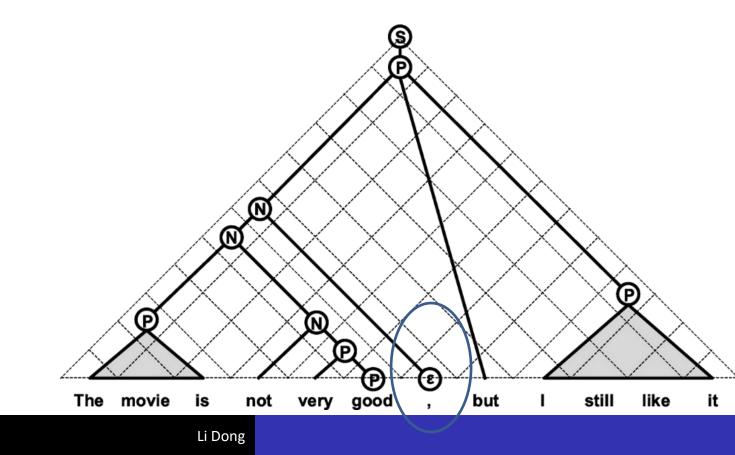
- Combination rules  $X \to c$ , where  $c \in (V_s \cup \Sigma_s)^+$ ,
  - P->N but P
  - P->not P
  - P-> very P



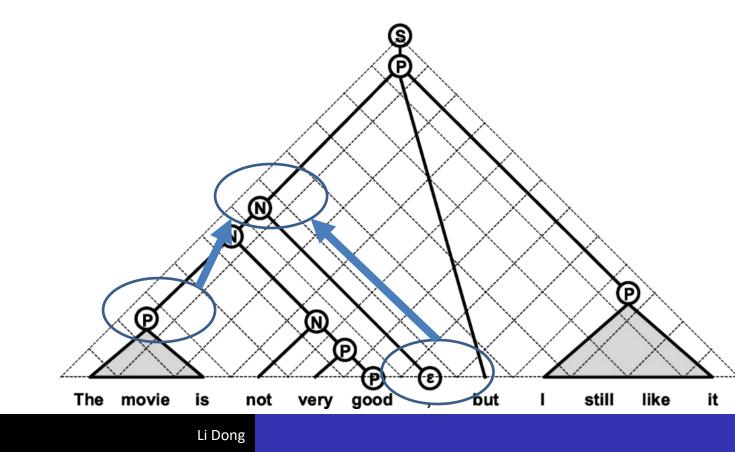
- Glue rules  $X \to X_1 X_2$ , where  $X, X_1, X_2 \in \{N, P\}$ 
  - P->NP
  - N->NN



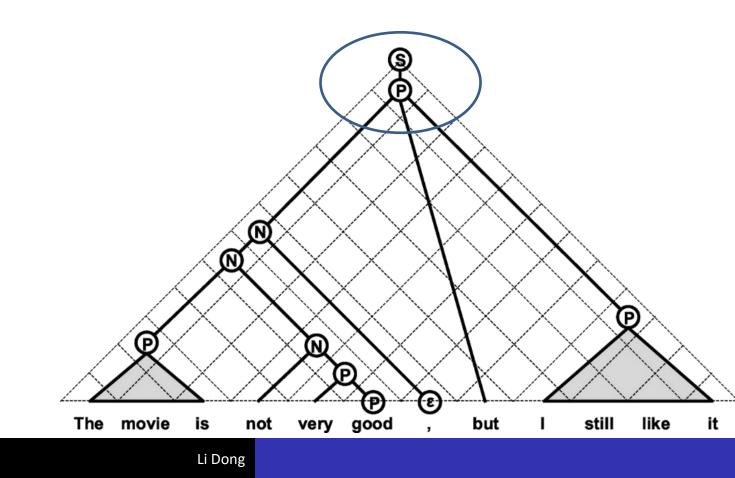
- **OOV rules**  $\mathcal{E} \to w_0^k$ , where  $w_0^k \in \Sigma^+$ 
  - Out-Of-Vocabulary text spans



- Auxiliary rules  $X \to \mathcal{E}X_1, X \to X_1\mathcal{E}$ , where  $X, X_1 \in \{N, P\}$ 
  - Combine out-of-vocabulary span and non-terminal



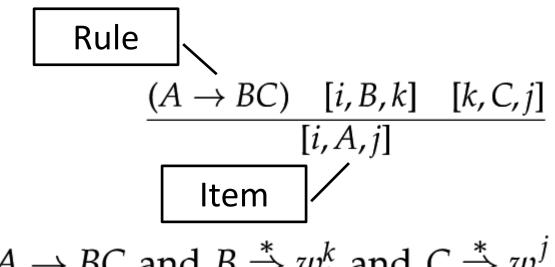
• Start rules  $S \to Y$ , where  $Y \in \{N, P, \mathcal{E}\}$ 



| Span                                                                | Rule                                 | Strength | Polarity       |  |  |  |
|---------------------------------------------------------------------|--------------------------------------|----------|----------------|--|--|--|
| [0, <i>P</i> , 3]: the movie is                                     | $P \rightarrow$ the movie is         | 0.52     | ${\cal P}$     |  |  |  |
| [5, P, 6]: good                                                     | $P \rightarrow \text{good}$          | 0.87     | ${\cal P}$     |  |  |  |
| $[6, \mathcal{E}, 7]:,$                                             | $\mathcal{E} \rightarrow ,$          | -        | -              |  |  |  |
| [8, <i>P</i> , 11]: i still like it                                 | $P \rightarrow i$ still like it      | 0.85     | ${\cal P}$     |  |  |  |
| [4, <i>P</i> , 6]: very good                                        | $P \rightarrow \text{very } P$       | 0.93     | ${\mathcal P}$ |  |  |  |
| [3, <i>N</i> , 6]: not very good                                    | $N \rightarrow \operatorname{not} P$ | 0.63     | $\mathcal N$   |  |  |  |
| [0, N, 6]: the movie is not very good                               | $N \rightarrow PN$                   | 0.60     | $\mathcal N$   |  |  |  |
| [0, N, 7]: the movie is not very good,                              | $N  ightarrow N \mathcal{E}$         | 0.60     | $\mathcal N$   |  |  |  |
| [0, <i>P</i> , 11]: the movie is not very good, but i still like it | $P \rightarrow N$ but $P$            | 0.76     | ${\cal P}$     |  |  |  |
| [0, <i>S</i> , 11]: the movie is not very good, but i still like it | $S \rightarrow P$                    | 0.76     | ${\cal P}$     |  |  |  |
| The movie is not very good , but 1 still like it                    |                                      |          |                |  |  |  |
| The movie is not very good ,                                        | but I still like                     | it       |                |  |  |  |
| Li Dong                                                             |                                      |          |                |  |  |  |

## Parsing Model

 Present inference rules using deductive proof systems



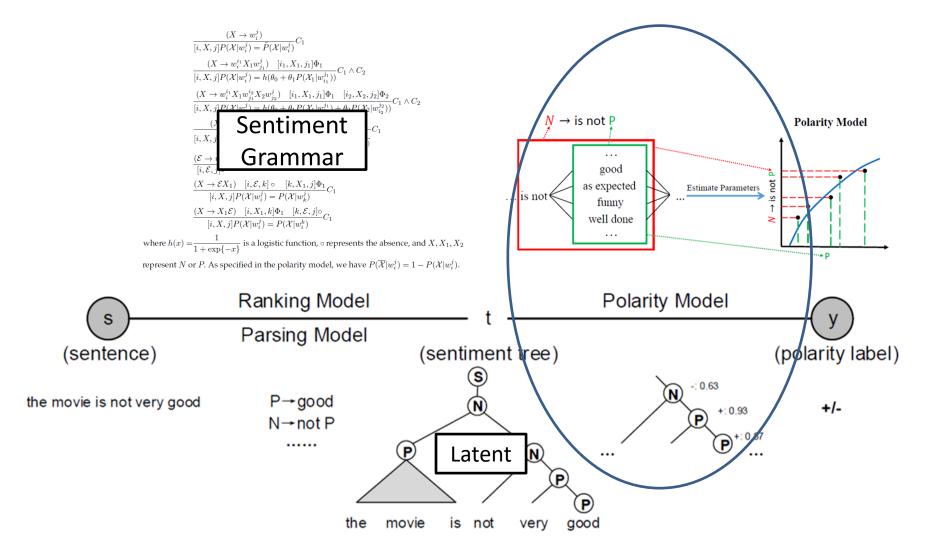
• If  $A \to BC$  and  $B \stackrel{*}{\Rightarrow} w_i^k$  and  $C \stackrel{*}{\Rightarrow} w_k^j$ 

• Then 
$$A \stackrel{*}{\Rightarrow} w_i^j$$

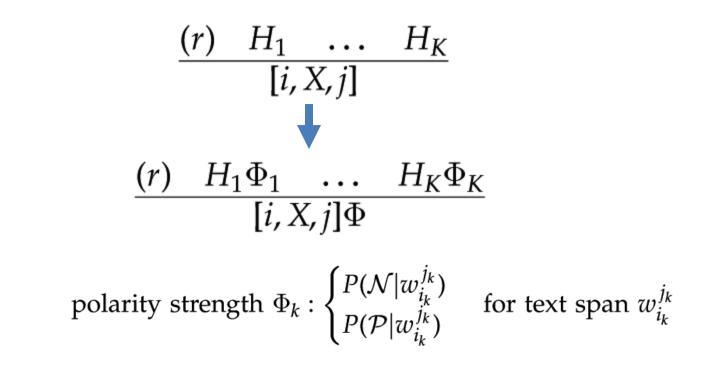
(Shieber, Schabes, and Pereira 1995; Goodman 1999)

## Inference Rules

where  $X, X_1, X_2$  represent N or P.



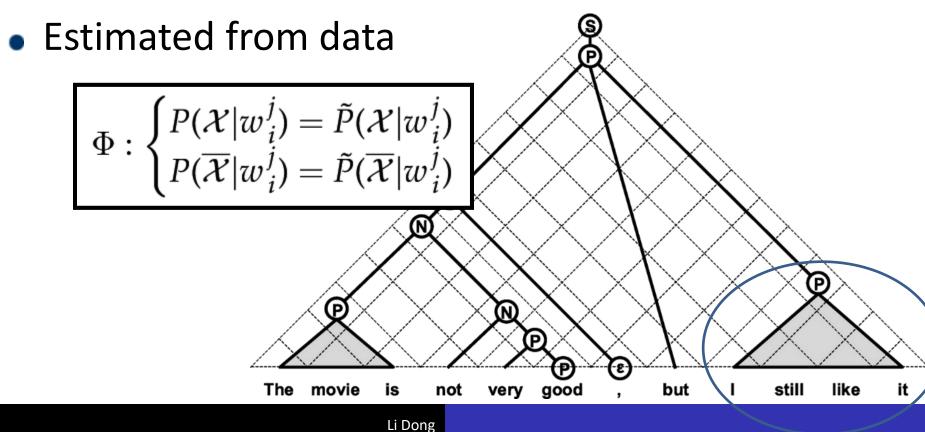
Calculate polarity strength from subspans



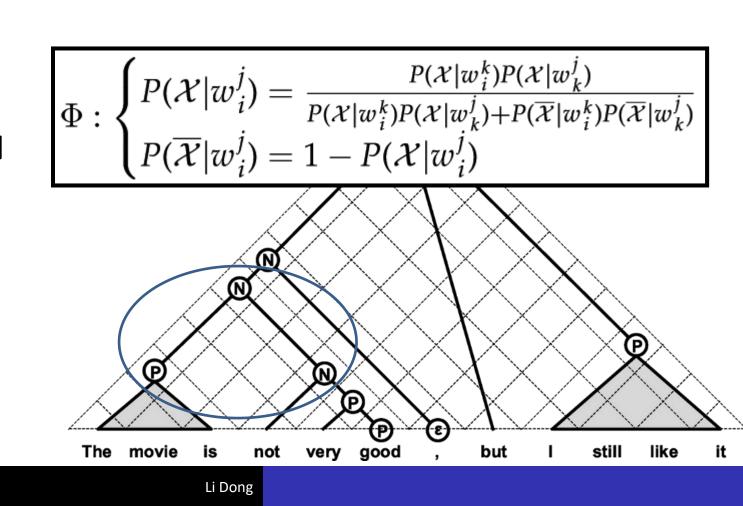
• Polarity model:  $\Phi(r, \Phi_1, \ldots, \Phi_K)$ 

- Two constraints for polarity strength
  - Non-negative  $P(\mathcal{X}|w_i^j) \ge 0, P(\overline{\mathcal{X}}|w_i^j) \ge 0$
  - Normalized to 1  $P(\mathcal{X}|w_i^j) + P(\overline{\mathcal{X}}|w_i^j) = 1$

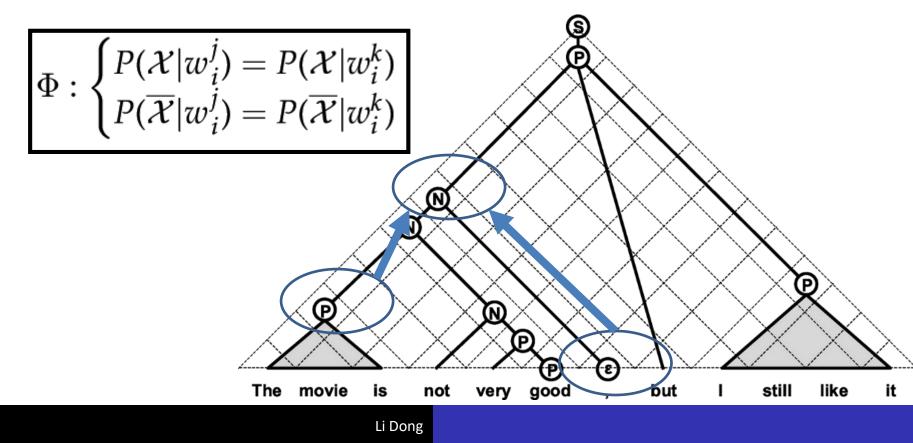
- Dictionary rules  $X \to w_0^k$ , where  $X \in \{N, P\}$ ,  $w_0^k = w_0 \dots w_{k-1}$ .
  - P -> I still like it
  - P -> good



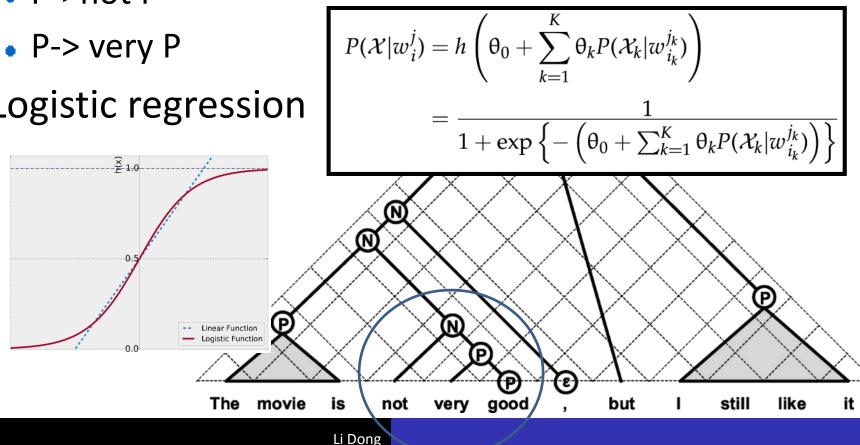
- Glue rules  $X \to X_1 X_2$ , where  $X, X_1, X_2 \in \{N, P\}$ 
  - P->NP
  - P->PN
  - P->PP
  - N->NN



- Auxiliary rules  $X \to \mathcal{E}X_1, X \to X_1\mathcal{E}$ , where  $X, X_1 \in \{N, P\}$ 
  - Combine OOV span and non-terminal
  - OOV span is ignored



- Combination rules  $X \to c$ , where  $c \in (V_s \cup \Sigma_s)^+$ ,
  - P->N but P
  - P->not P
- Logistic regression



# Why is logistic regression good?

- Negation (N->not P)
  - Switch negation (Choi and Cardie 2008; Sauri 2008)
    - Simply reverse strength
    - P(Neg|not good) = P(Pos|good)
  - Shift negation (Taboada et al. 2011)
    - Problem: P(Neg|not very good) > P(Neg|not good)
    - Solution: P(Neg|not good) = P(Pos|good) fixed\_value

| Parameter               | Negation Type                                                                           |              |  |  |
|-------------------------|-----------------------------------------------------------------------------------------|--------------|--|--|
|                         | $P(\mathcal{X} w_i^j) = h(\theta_0 + \theta_1 P(\overline{\mathcal{X}} w_{i_1}^{j_1}))$ |              |  |  |
|                         | Shift                                                                                   | Switch       |  |  |
| $\theta_0$ (Shift item) | $\checkmark$                                                                            |              |  |  |
| $\theta_1$ (Scale item) |                                                                                         | $\checkmark$ |  |  |

## Why is logistic regression good?

- Intensification (P->extremely P)
  - Fixed intensification (Polanyi and Zaenen 2006; Kennedy and Inkpen 2006)
    - P(Pos|very good) = P(Pos|good) + fixed\_value (>0)
  - Percentage intensification (Taboada et al. 2011)
    - P(Pos|very good) = P(Pos|good) \* fixed\_value (!=1)

| Parameter                                          | Intensification Type<br>$P(\mathcal{X} w_{i}^{j}) = h(\theta_{0} + \theta_{1}P(\mathcal{X} w_{i_{1}}^{j_{1}}))$ |              |  |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|--|
|                                                    | Percentage                                                                                                      | Fixed        |  |
| $\theta_0$ (Shift item)<br>$\theta_1$ (Scale item) | $\checkmark$                                                                                                    | $\checkmark$ |  |

# Why is logistic regression good?

- Reasons
  - Smooth polarity strength to (0,1)
  - Can learn various types of negation and intensification
  - Can handle contrast (P->N but P)

# Inference Rules (w/ Polarity Model)

$$\begin{array}{l} \mathsf{P}{->}\mathsf{good} \quad \frac{(X \to w_i^j)}{[i, X, j] P(\mathcal{X} | w_i^j) = \tilde{P}(\mathcal{X} | w_i^j)} \\ \mathsf{N}{->}\mathsf{not} \; \mathsf{P} \quad \frac{(X \to w_i^{i_1} X_1 w_{j_1}^j) \quad [i_1, X_1, j_1] \Phi_1}{[i, X, j] P(\mathcal{X} | w_i^j) = h(\theta_0 + \theta_1 P(\mathcal{X}_1 | w_{i_1}^{j_1}))} \\ \mathsf{P}{->}\mathsf{N} \; \mathsf{but} \; \mathsf{P} \quad \frac{(X \to w_i^{i_1} X_1 w_{j_1}^{i_2} X_2 w_{j_2}^j) \quad [i_1, X_1, j_1] \Phi_1 \quad [i_2, X_2, j_2] \Phi_2}{[i, X, j] P(\mathcal{X} | w_i^j) = h(\theta_0 + \theta_1 P(\mathcal{X}_1 | w_{i_1}^{j_1}) + \theta_2 P(\mathcal{X}_2 | w_{i_2}^{j_2}))} \\ \mathsf{P}{->}\mathsf{NP} \quad \frac{(X \to X_1 X_2) \quad [i, X_1, k] \Phi_1 \quad [k, X_2, j] \Phi_2}{[i, X, j] P(\mathcal{X} | w_i^j) = \frac{P(\mathcal{X} | w_i^k) P(\mathcal{X} | w_k^j)}{P(\mathcal{X} | w_k^j) + P(\mathcal{X} | w_k^k) P(\mathcal{X} | w_k^j)} \\ \mathsf{E}{->}, \quad \frac{(\mathcal{E} \to w_i^j)}{[i, \mathcal{E}, j] \circ} \\ \mathsf{P}{->}\mathsf{EP} \quad \frac{(X \to \mathcal{E} X_1) \quad [i, \mathcal{E}, k] \circ \quad [k, X_1, j] \Phi_1}{[i, X, j] P(\mathcal{X} | w_i^j) = P(\mathcal{X} | w_k^j)} \\ \mathsf{P}{->}\mathsf{PE} \quad \frac{(X \to \mathcal{X}_1 \mathcal{E}) \quad [i, X_1, k] \Phi_1 \quad [k, \mathcal{E}, j] \circ}{[i, X, j] P(\mathcal{X} | w_i^j) = P(\mathcal{X} | w_k^j)} \end{array}$$

## **Constraints (in Parsing Model)**

• Add side condition C for inference rules

## **Constraints (in Parsing Model)**

$$\frac{(r) \quad H_1\Phi_1 \quad \dots \quad H_K\Phi_K}{[i, X, j]\Phi}C$$

• Polarity should be consistent with non-terminal  $C_1 : P(\mathcal{X}|w_i^j) > P(\overline{\mathcal{X}}|w_i^j)$ 

polarity label of non-terminal X as  $\mathcal{X}$ 

- Avoid improperly using combination rules for neutral phrase
  - Do not use <u>P-> a lot of P</u> for <u>P->a lot of people</u>

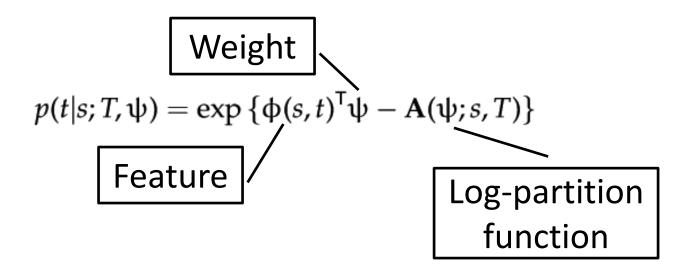
 $C_2: P(\mathcal{X}_k|w_{i_k}^{j_k}) > \text{threshold } \tau \ (\geq 0.5)$ 

#### Inference Rules (w/ Polarity Model and Constraints)

$$\begin{array}{ll} \mathsf{P}{\text{->}good} & \frac{(X \to w_i^j)}{[i, X, j] P(\mathcal{X} | w_i^j) = \tilde{P}(\mathcal{X} | w_i^j)} C_1 \\ \mathsf{N}{\text{->}not } \mathsf{P} & \frac{(X \to w_i^{i_1} X_1 w_{j_1}^j) - [i_1, X_1, j_1] \Phi_1}{[i, X, j] P(\mathcal{X} | w_i^j) = h(\theta_0 + \theta_1 P(\mathcal{X}_1 | w_{i_1}^{j_1}))} C_1 \wedge C_2 \\ \mathsf{P}{\text{->}N \ but } \mathsf{P} & \frac{(X \to w_i^{i_1} X_1 w_{j_1}^{i_2} X_2 w_{j_2}^j) - [i_1, X_1, j_1] \Phi_1 - [i_2, X_2, j_2] \Phi_2}{[i, X, j] P(\mathcal{X} | w_i^j) = h(\theta_0 + \theta_1 P(\mathcal{X}_1 | w_{i_1}^{j_1}) + \theta_2 P(\mathcal{X}_2 | w_{i_2}^{j_2}))} C_1 \wedge C_2 \\ \mathsf{P}{\text{->}NP} & \frac{(X \to X_1 X_2) - [i, X_1, k] \Phi_1 - [k, X_2, j] \Phi_2}{[i, X, j] P(\mathcal{X} | w_i^j) = \frac{P(\mathcal{X} | w_i^k) P(\mathcal{X} | w_k^j)}{P(\mathcal{X} | w_k^j) + P(\mathcal{X} | w_k^j) P(\mathcal{X} | w_k^j)} C_1 \\ \mathsf{E}{\text{->}}, & \frac{(\mathcal{E} \to w_j^j)}{[i, \mathcal{E}, j] \circ} \circ \\ \mathsf{P}{\text{->}}\mathsf{EP} & \frac{(X \to \mathcal{E}X_1) - [i, \mathcal{E}, k] \circ - [k, X_1, j] \Phi_1}{[i, X, j] P(\mathcal{X} | w_i^j) = P(\mathcal{X} | w_k^j)} C_1 \\ \frac{(X \to X_1 \mathcal{E}) - [i, X_1, k] \Phi_1 - [k, \mathcal{E}, j] \circ}{[i, X, j] P(\mathcal{X} | w_i^j) = P(\mathcal{X} | w_k^j)} C_1 \\ \end{array}$$

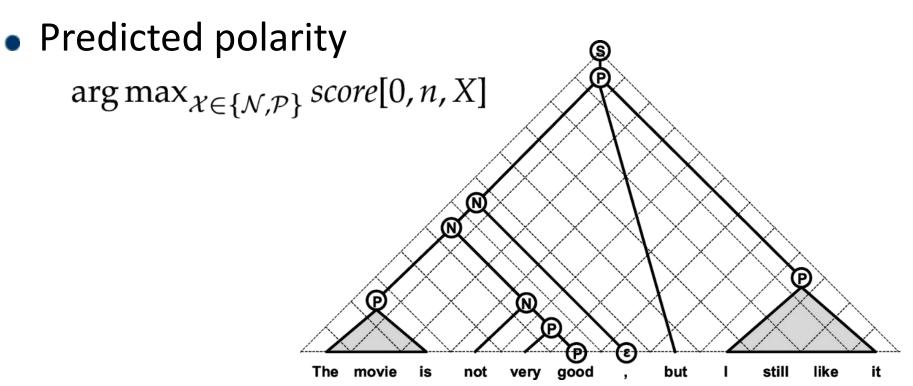
## **Ranking Model**

- Parsing model generates many candidates T(s)
- Use log-linear model to rank and score T(s)



#### **Bottom-Up Decoding**

- Ranking features decompose along trees
- CYK algorithm can be used to conduct decoding
  - Dynamic programming

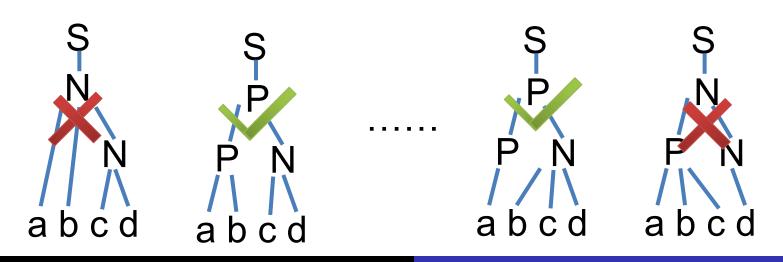


## **Ranking Model Training**

• Maximize probability of decoding correct labels

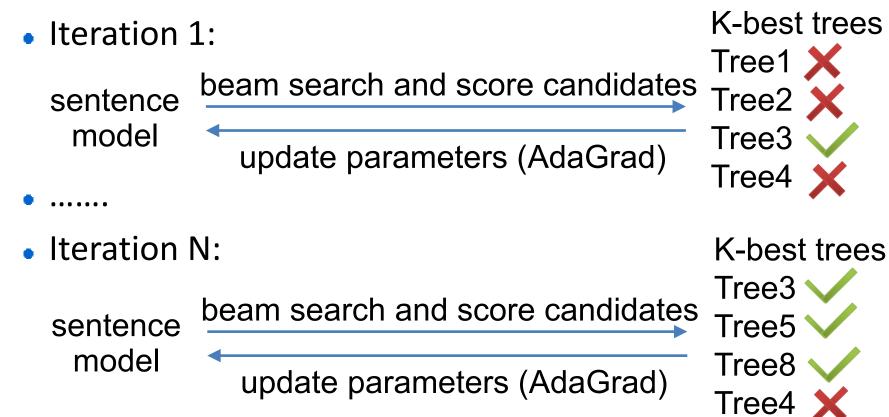
$$\mathcal{O}(\psi, T) = \sum_{\substack{(s, \mathcal{L}_s) \in \mathcal{D} \\ T^{\mathcal{L}_s}(s) \neq \emptyset}} \log p(\mathcal{L}_s | s; T, \psi) - \frac{\lambda}{2} \|\psi\|_2^2$$
Log-likelihood of trees obtaining the correct polarity label

• Example: (a b c d, P)



## Learning Ranking Model

• EM-like training (Liang, Jordan, and Klein 2013)



#### Learning Sentiment Grammar and Polarity Model

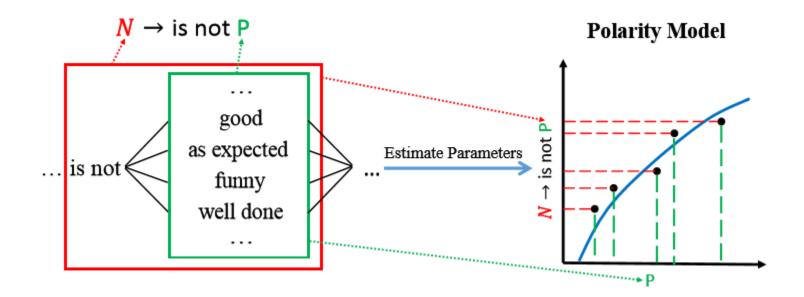
- Dictionary rules (P->good, N->i dislike this)
  - Mine frequent fragments as candidates
  - Prune them using polarity strength

$$P(\mathcal{X}|f) = \frac{\#(f, \mathcal{X}) + 1}{\#(f, \mathcal{N}) + \#(f, \mathcal{P}) + 2}$$

- Problem
  - This is not a good movie. (negative)
- Solution
  - Consider <u>negation rules</u> when learning polarity model for dictionary rules

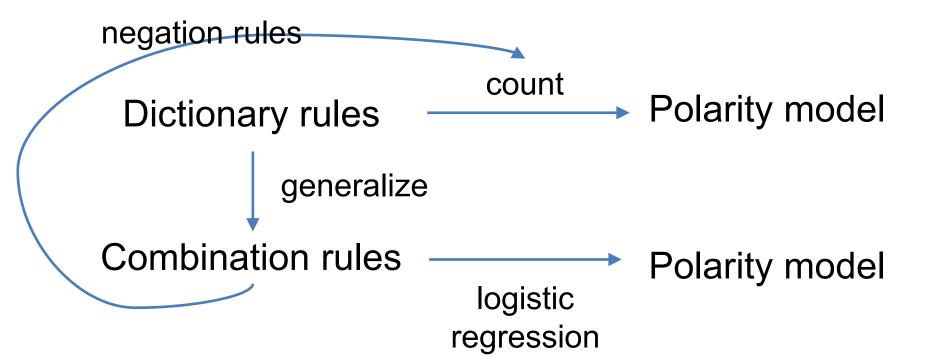
#### Learning Sentiment Grammar and Polarity Model

- Combination rules (N->not P)
  - Generalize dictionary rules
  - Polarity model: logistic regression



#### Learning Sentiment Grammar and Polarity Model



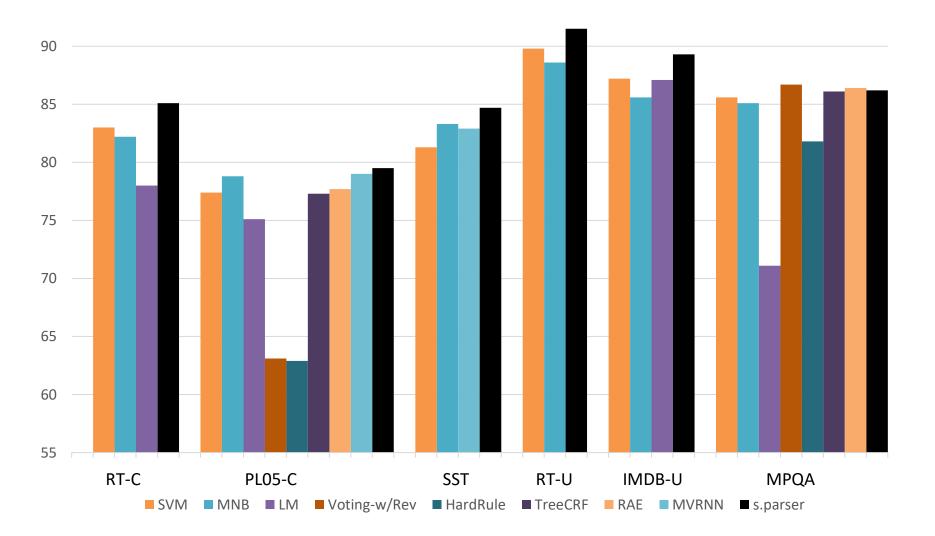


#### Experiments

Datasets

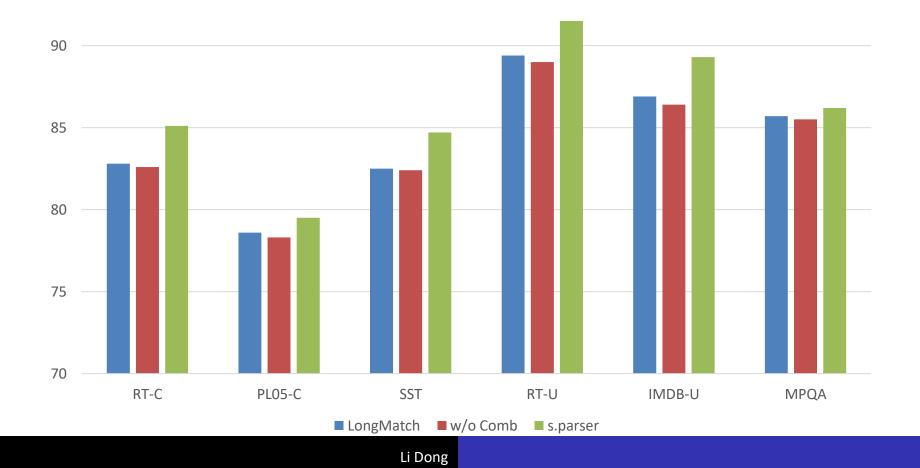
|                   | Data Set               | Size                         | #Negative                   | #Positive                   | l <sub>avg</sub>    | V                           |
|-------------------|------------------------|------------------------------|-----------------------------|-----------------------------|---------------------|-----------------------------|
| critic<br>reviews | RT-C<br>PL05-C<br>SST  | 436,000<br>10,662<br>98,796  | 218,000<br>5,331<br>42,608  | 218,000<br>5,331<br>56,188  | 23.2<br>21.0<br>7.5 | 136,006<br>20,263<br>16,372 |
| user<br>reviews   | RT-U<br>IMDB-U<br>MPQA | 737,806<br>600,000<br>10,624 | 368,903<br>300,000<br>7,308 | 368,903<br>300,000<br>3,316 | 15.4<br>6.6<br>3.1  | 138,815<br>83,615<br>5,992  |

#### Experiments



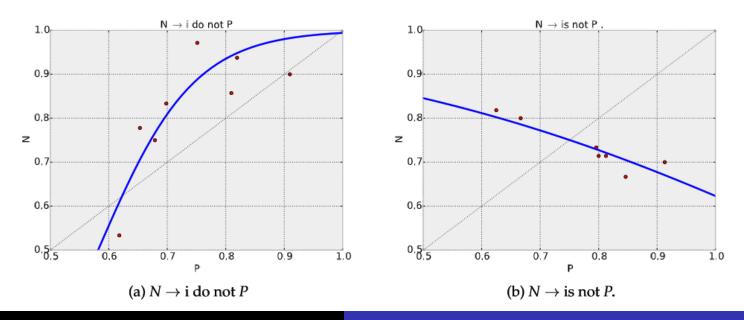
# Ablation

- Heuristic ranking trees
- Without combination rules

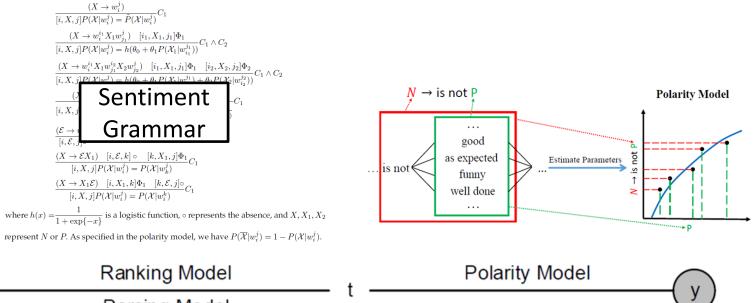


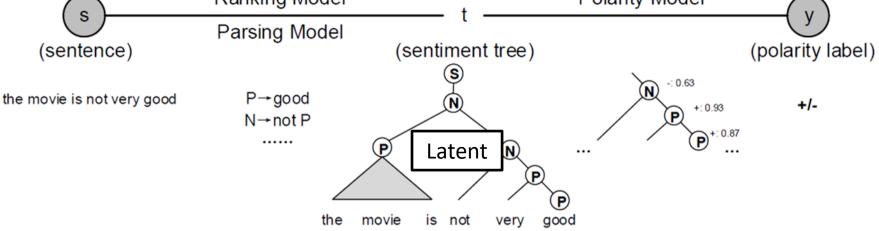
## **Combination Rules**

- Switch negation (Choi and Cardie 2008; Sauri 2008)
  - Simply reverse strength
  - P(Neg|i do not like) = P(Pos|like)
- Shift negation (Taboada et al. 2011)
  - P(Neg|is not good) = P(Pos|good) fixed\_value



## Conclusion





Many Thanks P->thanks

P->many P