A Hybrid Neural Model for Type Classification of Entity Mentions

Li Dong^{†*} Furu Wei[‡] Hong Sun^{\$} Ming Zhou[‡] Ke Xu[†] [†]State Key Lab of Software Development Environment, Beihang University, Beijing, China [‡]Microsoft Research, Beijing, China [§]Microsoft Corporation, Beijing, China donglixp@gmail.com {fuwei,hosu,mingzhou}@microsoft.com kexu@nlsde.buaa.edu.cn

Motivation

Types group entities to categories

Entity types are important for various NLP tasks

- Question answering
- Relation extraction
- Semantic role labeling
- ••••

Our task

predict an entity mention's type

Type Classification of Entity Mentions

Input

- $[c_{-S} \dots c_{-1}]$ $[w_1 \dots w_n]$ $[c_1 \dots c_S]$ nention right context
- Output
 - Type
- [an initiative sponsored by][Bill & Melinda Gates Foundation][to fight HIV infection]

Mention

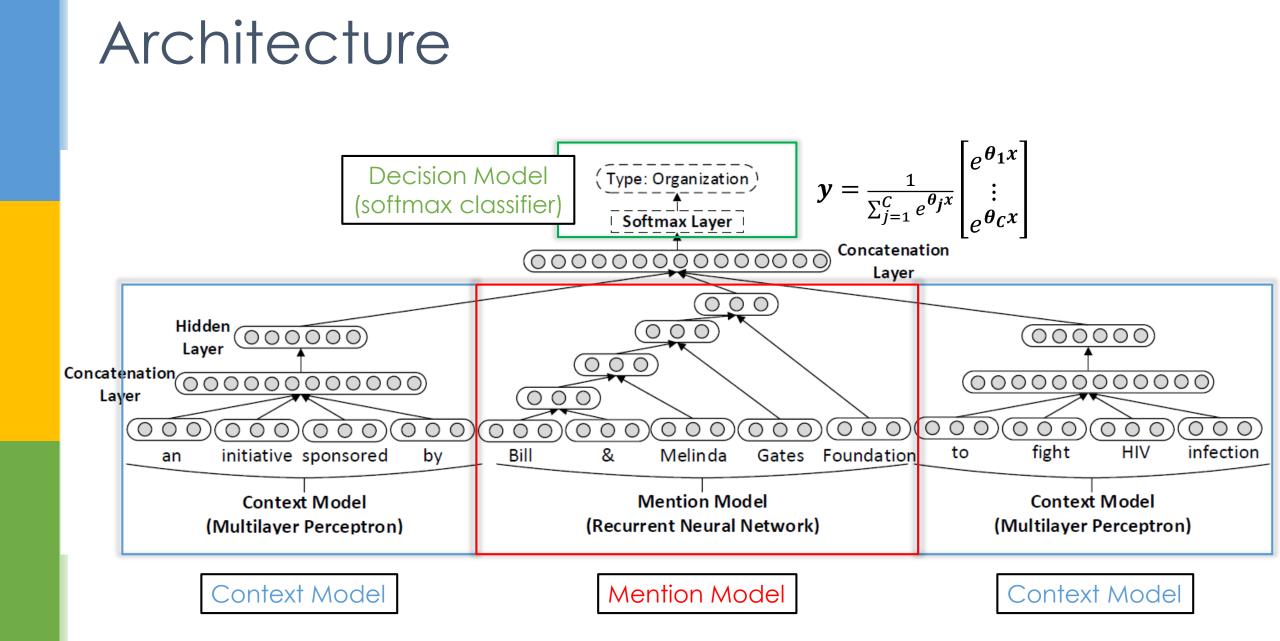
- Bill & Melinda Gates Foundation (Organization)
- Bill, Melinda, Gates -> {Person Name}
- Person Name} + Foundation -> Organization

Context

- [The greater part of][Gates][' population is in Marion County .] (Location)
- [Gates][was a baseball player.] (Person)

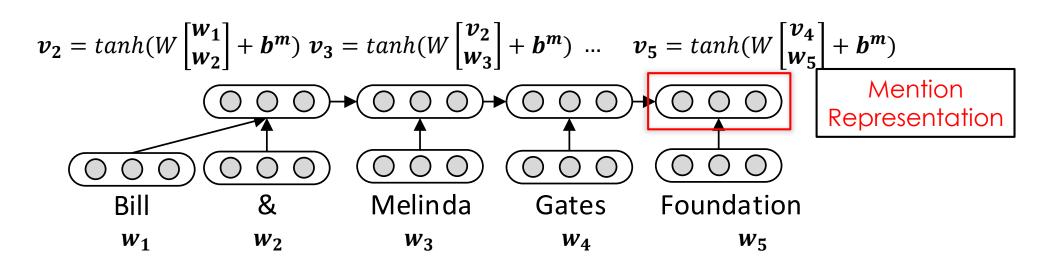
Related Work

- Named Entity Recognition
 - Limited types
 - Location, Person, Organization, Misc
 - (e.g.) Question Answering
 - Questions are classified into more answer types
- Named Entity Linking (1. Link to an entity in knowledge base 2. Query its entity type)
 - Performance drops for uncommon entities
 - (e.g.) Question Answering
 - Extracted answer candidate may not appear in knowledge base
 - NEL is a harder problem than type classification
- Design rich features
 - N-gram, morphological features, gazetteers, WordNet, ReVerb patterns, POS tags, dependency parsing results, etc.



RNN-based Mention Model

- Learn composition patterns for entity mention
 - {Name} + Foundation / University -> (Organization)
 - {Body Region} + {Disease} -> (Disease)
- Recurrent Neural Networks (Elman Networks)
 - Use a global composition matrix to compute representation recurrently
 - A natural way to learn composition patterns

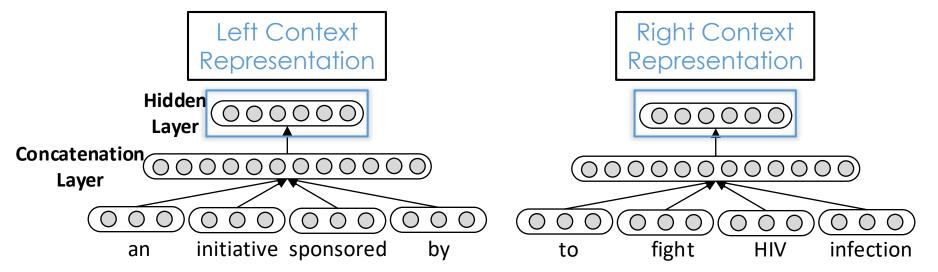


MLP-based Context Model

Use context to disambiguate

- [The greater part of][Gates][' population is in Marion County .] (Location)
- [Gates][was a baseball player.] (Person)
- MultiLayer Perceptrons

Location-aware, jointly trained



Model Training

Objective function

$$\underset{\theta}{\text{minimize}} \underbrace{-\sum_{i}\sum_{j}\boldsymbol{t}_{j}^{i}\log\boldsymbol{y}_{j}^{i}}_{\text{cross entropy loss}} + \underbrace{\frac{\lambda_{\theta}}{2}\|\theta\|_{2}^{2}}_{\text{regularization}}$$

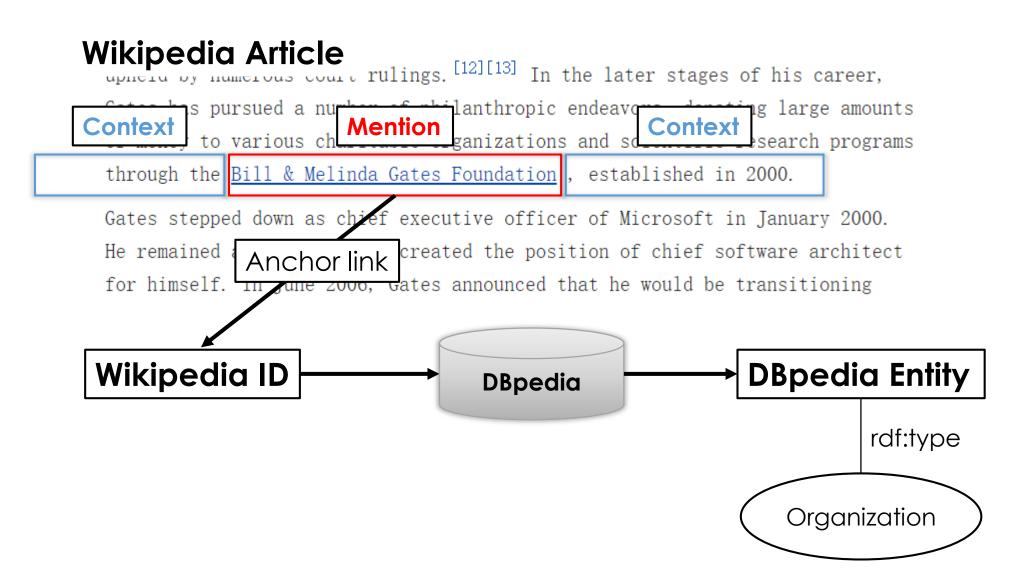
Back-propagation algorithm

Back-propagate errors of softmax classifier to other layers

Optimization

Mini-batched AdaGrad

Automatically Generating Training Data



Automatically Generating Training Data

- DBpedia ontology
 - 22 top-level types

Organisation, MeanOfTransportation, Holiday, Work, Food, Award, AnatomicalStructure, Device, Colour, Language, TopicalConcept, EthnicGroup, Currency, Disease, Drug, Person, Place, Activity, CelestialBody, Event, Species, BioChemSubstance

Wiki-22

- #Train: 2 million
- #Dev: 0.1 million
- #Test: 0.28 million

Evaluation on Wiki-22

- micro-F1 / macro-F1 score
- Baseline methods
 - Support Vector Machine (SVM)
 - Multinomial Naive Bayes (MNB)
 - Sum word vectors (ADD)
 - Use a softmax classifier
- *-mention
 - Only use mention
- *-context
 - Only use context
- *-joint
 - Use both mention and context

Method	Micro-F1	Macro-F1
SVM-mention	90.2	89.7
MNB -mention	87.0	87.6
ADD-mention	90.1	90.7
HNM-mention	93.4	93.6
SVM-context	76.3	73.3
MNB-context	72.8	70.0
ADD-context	75.4	73.1
HNM-context	81.1	78.3
SVM-joint	93.5	93.4
MNB-joint	85.9	82.8
ADD-joint	94.1	93.9
HNM-joint (our)	96.8	96.5

Comparison with Previous Systems

- HYENA [Yosef et al., 2012]
 - Support Vector Machine
 - unigrams, bigrams, and trigrams of mentions, surrounding sentences, mention paragraphs, part-of-speech tags of context words, gazetteer dictionary
- FIGER [Ling and Weld, 2012]
 - Perceptron
 - unigrams, word shapes, part-of-speech tags, length, Brown clusters, head words, dependency structures, ReVerb patterns

Dataset	Method	Micro-F1	Macro-F1
Wiki-5	HYENA	95.2	91.9
	HNM-joint	95.0	93.6
News	FIGER	72.6	80.1
	HNM-joint	75.1	80.6

Evaluation on Unseen Mentions

Evaluate on unseen mentions (length > 2)

Mentions which do not appear in the train set

Method	Micro-F1	Macro-F1
SVM-mention	75.8	68.8
MNB-mention	75.5	69.0
ADD-mention	76.1	69.3
HNM-mention	82.5	75.6

Help us deal with uncommon or unseen mentions

RNN-based mention model utilizes the compositional nature of mentions

Examples: Compositionality of Mentions

Query similar mention examples

cosine similarity of mentions' vector representations

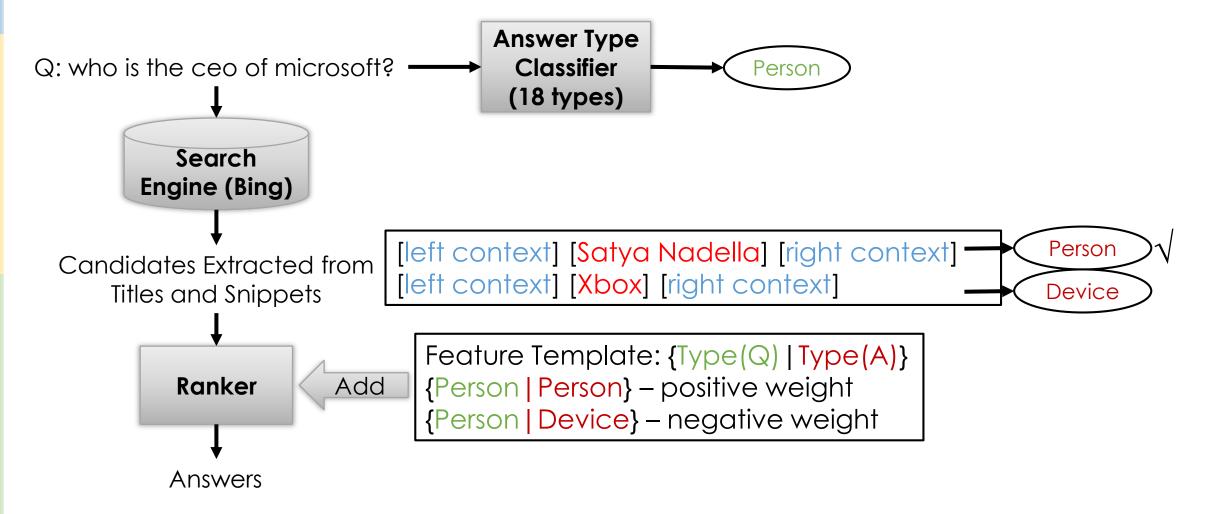
English civil war	Spanish civil war / Greek civil war / Nigerian civil war / Angolan civil war
Columbia University	Northwestern University School of Law / West Virginia University College of Law /
School of Law	University of Iowa College of Law / Golden Gate University School of Law
Subdural Hematoma	Intracranial Haemorrhage / Cardiac Arrhythmia / Duodenal Ulcer / Arterial Thrombosis
Joseph Jefferson Award	Margaret A. Edwards Award / Marian Engel Award / Doug Wright Award / Timothy Findley Award
Red-bellied Lemur	Oriental White-eye / Red-legged Honeycreeper / Black-crowned White-eye / Snowy Egrets

Mentions that are of similar patterns are closer

Evaluation in Question Answering (QA)

Web-based QA system [Cucerzan and Agichtein, 2005; Lin, 2007]

Add Q&A type interaction feature template



Evaluation in Question Answering (QA)

WebQuestions dataset [Berant et al., 2013]

Manually annotated question-answer pairs

Method	Acc@1	Acc@3	Acc@5
w/oTYPE	29.2	50.8	61.2
w/TYPE	33.5	55.6	64.4

Table 6: Evaluation results on the QA task. Type information obtained by our approach improves the accuracy. w/oTYPE: Without using type features in the answer ranking model. w/TYPE: Using type features in the answer ranking model.

Our type classifier improves the accuracy of QA systems

Conclusion and Future Work

Conclusion

- Recurrent Neural Networks are good at learning soft patterns
 - Compositional nature of entity mentions
 - Generalize for Unseen or uncommon mentions
- Automatically generate training data instead of annotating manually
- Type information is important for many NLP tasks
- Future work
 - Fine-grained type classification
 - Person -> doctor, actor, etc.
 - Utilize hierarchical taxonomy
 - Multi-label
 - Utilize global information (e.g., document topic)