

The Automated Acquisition of Suggestions from Tweets

Li Dong*

SKLSDE, Beihang University donglixp@gmail.com

Xiaohua Liu

Microsoft Research Asia xiaoliu@microsoft.com

Furu Wei

Microsoft Research Asia fuwei@microsoft.com

Ming Zhou

Microsoft Research Asia mingzhou@microsoft.com

Yajuan Duan*

University of Science and Technology of China dyj@mail.ustc.edu.cn

Ke Xu

SKLSDE, Beihang University kexu@nlsde.buaa.edu.cn

What is suggestion?

 Suggestion: The psychological process by which one person guides the thoughts, feelings, or behavior of another.

Why do suggestions matter?

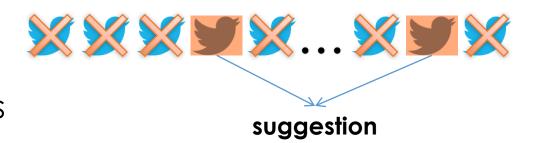
- When I arrived Seattle, I saw this
 - on the window of bus:

on the receipt of RITE AID PHARMACY:

Companies try to hear the voice of users.

Why do suggestions matter?

- A novel & useful task for Business Intelligence
 - Listen to your customers
 - Help on further improving the products
 - Extension for sentiment analysis


Where can we find suggestions?

- Twitter is a good data source to find suggestions.
 - User-generated content
 - Big data can lead to big intelligence
- Examples
 - I have an idea for "Microsoft". Make an app on WP7 that can remote login into your desktop and u can do everything.
 Content creation I mean
 - #microsoft #WindowsPhone7 I'd like multitasking please

Task

- Task Definition
 - Input: Tweets
 - Output: Find the suggestions

- Challenges
 - Sparsity: short text
 - Imbalance: ~7.93% of tweets are suggestions (windows phone 7)

Model

- Factorization Machines (FM)
 - Use few parameters to model the intersection

Weight: dot product of two k dimension vectors

$$\widehat{y}(\mathbf{x}) := w_0 + \sum_{j=1}^p w_j x_j + \sum_{j=1}^p \sum_{j'=j+1}^p \mathbf{v}_j^T \cdot \mathbf{v}_{j'} x_j x_{j'}$$

Compare with polynomial kernel SVM

$$\widehat{y}(\mathbf{x}):=w_0+\sqrt{2}\sum_{j=1}^p w_jx_j+\sum_{j=1}^p w_{j,j}{x_j}^2$$
 Weight: for each intersection

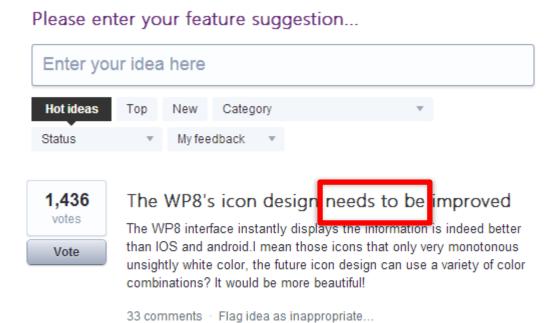
$$+\sqrt{2}\sum_{j=1}^{p}\sum_{j'=j+1}^{p}w_{j,j'}x_{j}x_{j'}$$

Steffen Rendle (2012): Factorization Machines with libFM, in ACM Trans. Intell. Syst. Technol., 3(3), May.

Model

Objective function

$$OPT(S,\lambda) := \underset{\Theta}{argmin} \left(-\sum_{(\mathbf{x},y) \in S} \ln \sigma \left(\widehat{y} \left(\mathbf{x} | \Theta \right) y \right) + \sum_{\theta \in \Theta} \lambda_{\theta} \theta^{2} \right)$$


- Optimization (off-the-shelf methods)
 - Stochastic Gradient Descent
 - Adaptive Stochastic Gradient Descent
 - L-BFGS
 - ...

Imbalance

- Combine two meta-methods
 - Meta-method: Without modify the original model
 - Oversampling (before training)
 - Redistribute training data set
 - Thresholding (after predicting)
 - If $p > \tau$, positive; else negative;
 - Search a good τ

Feature

- N-gram features
- #hashtag features
- Template features (sequential patterns)
 - Windows Phone's official web site
 - http://windowsphone.uservoice.com

Making and Receiving Calls

Maps 326

Marketplace 762

Messaging 1224 Music + Videos 1565 Office Mobile 308

Pictures 310

Search 215

Security 286

Speech 273

Sync 442 Update 537

Operating System 2125

People and Contacts 940

Power Management 167

Template Features

Use PrefixSpan algorithm to mine frequent sequential patterns efficiently

```
Algorithm 1 Automatic Suggestion Template Extraction
Input:
   Feedback data set;
   Parameters: minimum length, maximum length, minimum support;
```

Output:

Suggestion templates;

- 1: Tokenize the feedback data set into sentences
- 2: Filter domain-related words //"lumia", "windows" as examples in our experiments
- 3: Remove sentences less than 4 words in length
- template list=PrefixSpan(minimum length, maximum length, minimum support)
- 5: for template it in template list do
- if (template it are all stopwords) then
- remove template_it from template_list
- end if
- 9: end for
- 10: **return** template list;

Experiment

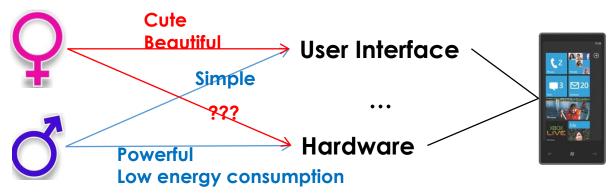
- Data set
 - 3,000 tweets manually
 - Keyword: windows phone 7, wp7 [September 2010 to April 2012]
 - 238 (/3,000=7.93%) of them are suggestions
 - Imbalance

Evaluation

	Method	Suggestion Tweets			Non-suggestion Tweets			Acc.
	Method	Prec.	Rec.	F-1	Prec.	Rec.	F-1	Acc.
SVM with bag-of-words	SVM1	56.96	52.18	54.47	95.82	96.53	96.17	92.33
+cost-sensitive	SVM2	56.79	57.27	57.03	96.33	96.27	96.30	93.21
+all features	SVM3	63.68	60.63	62.12	96.66	97.04	96.85	93.78
+cost-sensitive + all features	SVM4	63.76	65.35	64.55	97.02	96.85	96.93	94.49
+cost-sensitive + all features + polynomial kernel	SVM5	62.25	64.42	63.32	96.90	96.59	96.74	94.30
FM with bag-of-words	FM1	85.74	24.48	38.09	93.96	99.63	96.71	88.40
+cost-sensitive	FM2	60.89	60.79	60.84	96.54	96.57	96.55	93.68
+all features	FM3	85.37	43.00	57.19	95.37	99.34	97.31	91.18
+cost-sensitive + all features	FM4	71.06	67.86	69.42	97.21	97.46	97.33	94.86

Summary

- Propose the task of suggestion analysis
 - Not well studied previously, but useful
- Study of suggestion classification from Tweets
 - Use to FMs to model intersection when feature space is sparse
 - Combine oversampling & thresholding to overcome imbalance
- Release the data set for research
 - http://goo.gl/hXtRv


Future Work

- Target/Aspect Identification
 Target
 - I have an idea for "Microsoft". Make an app on WP7 that can remote login into your desktop and u can do everything. Content creation I mean

Aspect

- Target

 #microsoft #WindowsPhone7 I'd like multitasking please
- Suggestion Summarization
 - Who suggest How to What, When?

THANKS!

Q&A

Any suggestions?